报告题目: Non-uniqueness in law of Leray solutions to 3D forced stochastic Navier-Stokes equations
报告摘要:
This talk concerns the 3D forced stochastic Navier-Stokes equation driven by additive noise. By constructing an appropriate forcing term, we prove that there exist distinct Leray solutions in the probabilistically weak sense. In particular, the joint uniqueness in law fails in the Leray class. The non-uniqueness also displays in the probabilistically strong sense in the local time regime, up to stopping times. Furthermore, we discuss the optimality from two different perspectives: sharpness of the hyper-viscous exponent and size of the external force. This is a joint work with Elia Brué, Rui Jin, and Deng Zhang.
报告人: 李亚纯 教授 (上海交通大学)
报告人简介:李亚纯,上海交通大学数学科学学院教授,博士生导师,长期从事非线性偏微分方程的理论及应用研究,发表论文80余篇,出版英文译著3本。主持了多项国家自然科学基金(含重点项目1项)和上海市自然科学基金项目,曾获上海市自然科学一等奖和上海市教学成果奖一等奖,入选教育部新世纪优秀人才支持计划,上海市曙光学者,国际期刊Communications on Pure & Applied Analysis和Commun. Math. Anal. Appl.编委。上海市工业与应用数学学会副理事长,教育部高等学校大学数学课程教学指导委员会委员。
报告时间: 2024.12.2(周一) 上午 10:00-11:30
报告地点: 逸夫楼1537